
© 2005 - Stephen James

“LOOKING FOR LIFE”
FINDING COMPLEXITY

IN THE CA LANDSCAPE

Artificial Life Project

EASY MSc

Department of Informatics

University of Sussex - Brighton - United Kingdom

1 INTRODUCTION

Complex emergent behaviour is seen throughout nature, and in many different guises. Bee

colonies select nest sites and forage for food with an extremely high degree of efficiency

[13, 14]. Ant colonies zone their graveyards, food stores and nests at a perfect

equidistance from one-another [15]. Flocks of birds, schools of fish, swarms of insects and

herds of mammals move with the grace of a coherent unit. There is no central commander

in such systems. No conductor orchestrating the behaviour of each individual. The order

emerges naturally from the dynamics of the underlying system.

How does such complex behaviour emerge and persist from the simple interaction of a

system’s components? Are there general properties that a system must possess in order

for this “emergence” to become possible?

Cellular Automata (and other discrete dynamical networks) have become a central tool in

the study of such questions. It is hoped that by examining the mathematics of complex

dynamical systems we will be able to better understand these basic principles of

emergence.

In general a dynamical system (and specifically a CA) will result in one of three types of

behaviour. Chaotic, ordered (periodic / fixed) or complex. In studying von Neumann CAs

Page 1 of 28

© 2005 - Stephen James

(with 2 states and a 9 cell neighbourhood) we find that the VAST majority of the 10154

rulesets will result in either chaotic or ordered behaviour. In fact, only a tiny proportion of

rulesets have been found which show any signs of complex behaviour at all.

A classic example is John Conway’s “Game of Life” whose emergent behaviour is proven to

have the computational power of a Universal Turing machine. But what is it that makes

this ruleset stand out from the other less interesting ones? Are there any significant factors

which may be used to define and navigate the vast CA rulespace in order to find other

rulesets with similar emergent potency?

It is the aim of this paper to highlight two “factors” which the author believes fulfil these

criteria.

A mutational GA which successfully traverses the CA landscape using these factors will be

defined and the resulting “interesting” rulesets described.

Finally, a look at the complexity of these results shall be given along with a discussion of

future projects which will be undertaken to further investigate the significance of these

factors.

2 CURRENT METHODS

Firstly, it is important to examine “some” of the existing methods used for mapping and

classifying the areas of complexity within the CA landscape. A detailed and thorough

analysis of each approach is not given within this paper but may be found within the

references provided for each.

Wolfram Classes

The first, quite general, approach in classifying CA rulesets came from Stephen Wolfram in

1984 [12]. He found that CAs displayed one of four classes of (dynamical) behaviour: fixed

points (class I); limit cycles (class II); chaotic (class III); and “interesting” or “complex”

behaviour (class IV). It is now understood that fixed points can be defined as limit cycles

with a period of one, and so these classes can more generally defined as order, chaos and

complexity.

λ Parameter

In the late 1980’s Chris Langton defined the λ parameter [9]. This is simply defined as the

“proportion of rules which result in a non quiescent state”. In the Game of Life, 140 of the

512 rules lead to a non-ZERO state and so λ = 0.2734. It was thought that higher λ values

would lead to chaotic behaviour, whilst lower λ values would result in more ordered

Page 2 of 28

© 2005 - Stephen James

behaviour. Norman Packard took this one step further by naming this critical λ value (λc)

“the edge of chaos” (the transition zone between ordered and chaotic systems). However,

it has since been shown that complex behaviour can be found many other λ values and so

the critical “edge of chaos” shows no real significance in defining the regions of complexity

(see Crutchfield, Mitchell et al [5, 6, 7]).

Z Parameter

Andy Wuensche, in 1996, performed an extensive study of the attractor basins found

within all kinds of discrete dynamical networks [4]. Such networks are deterministic and

dissipative (having an “arrow of time”); by this we mean that two trajectories through

state-space may converge but will never diverge. Wuensche devised a method of, having

found an attractor in state-space, stepping backwards in time to find all of the possible

“pre images” (previous states) which may have lead to this attractor. By continuing this

process until presented with only “garden of eden” states (states without any pre-images)

a full transient tree can be drawn up, highlighting the full structure of the attractor basin.

Wuensche found that bushier transient trees (those with a higher in-degree of

convergence) showed more ordered behaviour whilst sparser transient trees were more

chaotic. Complexity lay somewhere in between. By defining a parameter (Z) as a measure

of this “bushiness”, it was possible to predict the expected class of a given CA.

Entropy Variance

A further measure outlined by Wuensche is Entropy Variance1. At each time-step every cell

is in a particular “state” and makes a corresponding lookup from the CA rule-table. By

recording the frequency distribution of these state lookups, we are able to measure the

entropy of the system (equation 1).

(Equation 1) Shannon Entropy

Where is the lookup frequency of neighbourhood i at time t.

High entropy (a wide distribution of states found in the system) indicates a chaotic

system; low entropy indicates an ordered system (perhaps cycling through just a handful

of states). A fluctuation between periods of high and low entropy is an indication of a

complex system.

1 It is not clear where this measure first originated.

Page 3 of 28

© 2005 - Stephen James

1/F Noise

Finally, a brief mention of a more recent development in defining the CA landscape. In

1998, Shigeru Ninagawa [2] showed that (for symmetric, outer-totalistic von Neumann

CAs) the Game of Life is the only ruleset where the Fourier transformation of the time

series of states exhibits 1/f fluctuation (sometimes referred to as “multiscale” entropy

variance).

Subsequently Ninagawa has evolved other Cellular Automata (from within a wider

rulespace) which match this property and which display similar complex emergent

behaviour to that found in the Game of Life [3].

Each of the above methods aims to outline a “footprint” or “signature” that can be used in

“looking for life” within the CA rulespace: either through specific λ values; through the

bushiness of transient trees; through telltale entropy variance or through 1/f noise. The

aim is shared. The remainder of this paper will outline and examine two further such

“footprints”; the “stay alive” rate, and the “population” rate.

3 STAYING ALIVE AND POPULATION RATES

Complex systems are made up of a large number of sub-components interacting in a

non-linear fashion. Additionally, in vivisystems such as the human body, a bee colony, or a

city, these sub-components are continually being replaced through the processes of birth

and death. Somehow, the higher-level emergent system remains stable despite the

continual death and regeneration of its constituent parts2.

Examination of a single glider

A single glider within the Game of Life can be looked upon in similar terms; its form

remains despite the continual birth and death of its constituent cells. This is pictured in

figure 1 where newly born cells are highlighted with a lighter shade.

Step 1a Step 2a Step 3a Step 4a Step 1b

2 Stable is used here in the general sense as opposed to the more formal “stability” used to describe

attractors within dynamical systems.

Page 4 of 28

© 2005 - Stephen James

(Figure 1) The lifecycle of a glider (new components are highlighted with a lighter shade)

During each phase in the lifecycle; a proportion of cells remain alive, a proportion of cells

die out and a proportion of new cells are born (see table 1).

Births Deaths Stay Alives Population

1a – 2a 2 2 3 5 of 25

2a – 3a 2 2 3 5 of 25

3a – 4a 2 2 3 5 of 25

4a – 1b 2 2 3 5 of 25

(Table 1) Births, deaths and “stay alives” of a glider

So, a glider maintains a constant population of cells with a consistent birth and death rate

of 40% (or conversely a stay-alive rate of 60%).

Examination of CAs in General

Before expanding this investigation to cover CAs in general, a more formal definition of

terms needs to be given.

● A “live” cell is a cell in a non-quiescent state

● A “dead” cell is a cell in a quiescent state

● The population (P) is the % of “live” cells in the lattice at time t.

● The birth rate (B) is the % of p at time t which was “dead” at time t-1.

● The death rate (D) is the % of p at time t-1 which is “dead” at time t.

● The stay alive rate (SA) is the % of p at time t-1, which is also “live” at time t.

From this, it becomes possible to record these “rates” for any CA at any given time-step;

and a natural progression is to examine the dynamics of how these rates change over

time.

Figures 2a, 2b and 2c show these “rate-change graphs” for a number of different CAs. In

each case, a CA is given a random initial state (with a population of approximately 10%),

and is run for 100 time-steps. Each of the “rates” is recorded for each time-step and the

data is plotted on a single graph along with the value of λ for that ruleset.

Figure 2a examines two arbitrarily chosen CAs which show ORDERED behaviour (quickly

collapsing to fixed points and simple blinkers). Figure 2b examines two CHAOTIC CAs and

2c examines the GAME OF LIFE. All of the CAs have a λ value of approximately 0.27 (to

try and compare like for like).

Page 5 of 28

© 2005 - Stephen James

(Figure 2a) SA, B, D and P in ORDERED systems

(Figure 2b) SA, B, D and P in CHAOTIC systems

(Figure 2c) SA, B, D and P in GAME OF LIFE

Page 6 of 28

© 2005 - Stephen James

Although there are obvious differences between these three graphs, the primary distinction

may not appear immediately significant. So, the next step is to examine how the “rates”

vary for different values of λ.

Starting with an initial ruleset with λ ≈ 0.9 a “rate-change graph” is plotted for 25

time-steps. The ruleset then has 1% of its rules “turned off” at random, (reducing λ by

0.1). The “rate-change graph” is then plotted for a further 25 time-steps. This process is

continued until λ ≈ 0.1. The results are shown in figure 3a.

(Figure 3a) Walking through CHAOS

Next, the same process is performed, but this time, the “turning off” of rules is not done

randomly. The rules are turned of in such a way as to bring the ruleset closer and closer to

the Game of Life. The results for this are shown in figure 3b.

Page 7 of 28

© 2005 - Stephen James

(Figure 3b) Tuning in to the GAME OF LIFE

Observations

A number of possible observations can now be drawn from examining figures 2a, 2b, 2c,

3a and 3b.

For All Systems

1: In general the birth and death rates are approximately equal.

2: Death rate is intuitively 1-SA

For Chaotic Systems

3: The population and the SA rates closely follow the value of λ.

4: The birth and the death rates closely follow the value of 1-λ.

5: All rates maintain an obvious mean with a low, noisy variance.

For Ordered Systems

6: The population is significantly lower than λ.

7: The SA rates may be significantly different to λ.

8: The birth and the death rates may be significantly different to 1-λ.

9: All rates maintain a obvious mean with a low, ordered variance3.

For Complex Systems

10: The population is significantly lower than λ.

11: The SA rates may be significantly different to λ.

3 The more important factor here is the ORDERED nature of the variance – repeated patterns, or

flatness. Mostly this is low in height, but order can be found with a higher change.

Page 8 of 28

© 2005 - Stephen James

12: The birth and the death rates may be significantly different to 1-λ.

13: The mean for each rate is not obvious with a high, noisy variance.

Through these observations, it’s now possible to hypothesise what “footprints” may

highlight complex rulesets.

A complex ruleset appears to show signs of both order and chaos. It maintains a

disproportionately low population rate (signifying order) whilst also maintaining a high,

noisy variance in SA, birth and death rate (signifying chaos). From observations 1 and 2,

we can simplify this even further:-

“a complex system maintains a population rate disproportionately lower than λ

whilst maintaining an high, noisy variance in SA rate4”.

4 Birth, Death or SA rate can be used equivalently. SA was chosen by preference.

Page 9 of 28

© 2005 - Stephen James

4 IMPLEMENTATION OF THE CA SEARCH

This chapter will describe a mutational GA that has been implemented to look for rulesets

which display these “complex footprints”.

MATLab

First, a quick look at the choice of programming environment. MATLAb is an excellent tool

for the implementation of CAs. Its capacity for working with matrices is ideal for the

storage and manipulation of the cell lattice, and rule-tables. Additionally, the strong

graphing and imaging functionality allow for swift and simple result reporting; ideal for this

report.

The final code is given in Appendix A, as best as possible the code is commented to

highlight the key variables and functions.

CA Design

Having previously developed a genetically evolvable CA in MATLab, a large proportion of

the CA design decisions have already been worked through and discussed (see [16] for a

thorough breakdown of the implementation and encoding techniques).

In brief however; by limiting the search to 2-state CAs it is possible to make good and

strong use of BINARY encoding techniques (a cell is either ALIVE=1 or DEAD=0). For a 9

cell neighbourhood (as in the Game of Life) each possible cell in the neighbourhood will be

either 1 or 0. By mapping each position in the neighbourhood with a position in a 9 bit

binary string we can represent each of the possible states with a single number ranging for

0 to 512 (see Figure 4). From here, an entire CA rule-table can now be represented by a

single binary array of 512 bits.

Value = 0

32 2 64

16 1 4

256 8 128

Value = 391

32 2 64

16 1 4

256 8 128

(Figure 4) Mapping neighbourhood to bit value in a binary string

Page 10 of 28

© 2005 - Stephen James

Adding Symmetry

Symmetry is a major aspect of the study of CAs, in particular to the study of complexity

within CAs. The Universal Computational power of the Game of Life could not exist without

the ability of gliders to move in all directions and so collide (a feature made possible

through symmetry of rules). As such, it is felt that the CA design should have the option of

“enforced symmetry”.

Figure 5 shows the rotation of a glider through 90 degrees and thus provides a mapping of

neighbourhood positions (391 maps to 301). A similar mapping can also be given for 180

and 270 degree rotations.

Value = 391

32 2 64

16 1 4

256 8 128

Value = 301

32 2 64

16 1 4

256 8 128

Mapping

1 2 4 8 16 32 64 128 256

90o 1 4 8 16 2 64 128 256 32

(Figure 5) Mapping neighbourhoods in rotational symmetry

By building up data arrays of these mappings it becomes a trivial exercise of table-lookup

to determine the symmetries of any given CA state.

GA Design

This method of binary encoding enables an entire CA rule-table to be stored as an array of

512 bits; an ideal genotype for a genetic algorithm (GA). The next step is to define the

style of algorithm which will best search the phenotypes of behaviour.

Looking back to figure 3b, it can be seen that as a ruleset mutates towards the Game of

Life, the “footprint” (or fitness) increases. It was therefore decided that a purely

mutational GA would be developed with the aim of slowly stepping towards greater and

greater levels of complexity5.

5 This decision warrants a great deal more investigation and is discussed further within section 6

Page 11 of 28

© 2005 - Stephen James

In brief, the aim is to find reasonable peaks in the fitness landscape and to randomly

examine the local terrain looking for higher points. Once a higher peak is found the

population should converge around it and begin its meandering again from here.

The basic mechanisms are provided in Algorithm 1. A population of random rulesets is

created; the fitness of each is measured; a handful of the fittest parents are copied into

the next population and the remaining children created by through their mutation.

1 Generate a POPULATION of random rulesets

2 FOR loop = 1 TO generation-time

3 FOR EACH ruleset in POPULATION

4 Calculate Fitness Score

5 NEXT ruleset

6 Sort POPULATION by fitness

7 Empty NEW-POP

8 FOR x = 1 TO no-of-parents-to-keep-alive

9 NEW-POP = NEW-POP+ POPULATION(x)

10 FOR y = 1 TO no-of-children-per-parent

11 NEW-POP = NEW-POP + RANDMUTATE(POPULATION(x))

12 NEXT y

13 NEXT x

14 POPULATION = NEW -POP

15 NEXT loop

Algorithm 1: The basic GA

Population Size and Mutation Rates

The choice of population size and of how large a “handful” to keep alive in each generation

really warrants an in depth investigation beyond the scope of this report. However, through

a process of trial and error it was found that a “keep alive rate” of around 10% worked

particularly well, with a population of around 60-1006.

Child rulesets are generated by copying a parent ruleset and randomly flipping a number

of rules (whilst also ensuring that symmetry was maintained). The number of these

mutations (the mutation rate) can potentially range from just a single symmetrical flip, to

a full negation of the parent. Again, through trial and error, it was found that changing

10%-20% of the rules seemed to result in the greatest overall performance7.

7 This is an extraordinarily high mutation rate and is discussed within the conclusions of section 6

6 Too high a population would result in too many CA fitness evaluations; slowing down the process

dramatically as this is the primary computational cost. Too small a population would simple not move

quickly enough through the landscape, again causing slow performance.

Page 12 of 28

© 2005 - Stephen James

To allow for a greater range of mutations (and therefore introducing variability into the

width of meanders) the mutation rate was made stochastic within certain limits. This

meant that some children would mutate with a low rate of 1-2%, whilst other children

would mutate with a high rate of 20-30%.

Measuring Fitness

Calculating the fitness of a ruleset has been outlined earlier. A fit ruleset maintains a

population rate disproportionately lower than λ whilst maintaining an high, noisy variance

in SA rate.

A function (runCA) has been implemented which steps through the CA state-space and

returns a vector of SA and P values for each time-step. From this:-

Fitness of Mean is measured by splitting each vector in half and comparing the mean of

each half with some desired value (this ensures that a stable mean is maintained –

punishing linear increases or decreases).

Fitness of Variance is simply the variance of the vector. However, an additional constraint

is that the change-distribution should be roughly Gaussian8 to ensure that this variance is

“noisy”.

Finally, λ can also be calculated and compared to a desired value.

These fitness measurements and comparisons are then added together to form the overall

score for the ruleset.

By using “desired values”, it becomes possible to further examine the CA landscape.

Setting desired values such that P ≈ 0.1, SA ≈ 0.65 and λ ≈ 0.2734 will look for rulesets

with similar rates to the Game of Life. However, it is equally possible to look complexity

elsewhere.

Other Parameter Considerations

Finally, there are a few more parameters which need to be taken into consideration.

The initial state-space; It was decided that for the purpose of these experiments that a

random initial state-space with a population rate close to the desired population rate would

be used.

8 See conclusions in section 6

Page 13 of 28

© 2005 - Stephen James

The size of the CA lattice; with larger lattices, the CA state-space is open to display a

much wider collection of behaviours. However, larger lattices take a lot longer to evaluate.

For these experiments a CA of 50x50 cells was used.

CA Run Time; longer runs will highlight behaviours far more clearly, however there is a

huge computational overhead. For these experiments each CA was run for 100 time steps.

5 RESULTS

Using the described program the CA rulespace was searched, and the final rulesets

examined. This section aims to highlight just a few of the rulesets found, their behaviours

and their corresponding SA and P rates.

Example 1: SA = 0.65 : P = 0.05 : λ= 0.27

Very close to Game of Life

Similar SA, P and λ values to Game

of Life.

Includes gliders, fixed points and

chaotic explosions.

Example 2: SA = 0.40 : P = 0.05 : λ= 0.40

Glowing Snowflakes
SA ≈ λ

Regions of chaos quickly disappear

to leave lovely looking long-period

(about 35 state) cyclical attractors.

Example 3: SA = 0.70 : P = 0.10 : λ= 0.43

Lines and gliders

Lots of growing straight lines that,

when hit with regions chaos, burn

like a fuse.

Plus high rate of gliders.

Example 4: SA = 0.55 : P = 0.08 : λ= 0.50

Big blobs

Larges areas of throbbing chaotic

mass which show signs of stability

(they do not decay to full order or

chaos)

Page 14 of 28

© 2005 - Stephen James

Example 5: SA = 0.42 : P = 0.08 : λ= 0.42

Big blobs and gliders

Large areas of chaotic mass in an

otherwise empty environment except

for a number of gliders flying about.

Example 6: SA = 0.55 : P = 0.10 : λ= 0.30

Minimal Replicator

Fractular

Given a start of 2 blocks, the CA

grows endlessly in a fractular

pattern.

Example 7: SA = 0.48 : P = 0.08 : λ= 0.37

Minimal Replicator

Complex Lifecycle

Minimal replicator with a

exceptionally long but finite,

non-repeating lifecycle resulting in a

couple of blinkers.

Example 8: SA = 0.35 : P = 0.05 : λ= 0.32

Minimal Replicator

Glider gun

Minimal replicator with a finite

lifecycle. During its lifecycle one

single glider is fired in each

direction.

Example 9: SA = 0.52 : P = 0.08 : λ= 0.35

Minimal Replicator

Clouds of Gliders

A minimal replicator which after a

while starts emitting gliders in all

directions. Gliders can react to

create new replicators.

There are many, many more examples that could have been listed here. Each run of the

programme produced a variety of interesting and complex behaviours; including all sorts of

Page 15 of 28

© 2005 - Stephen James

gliders, cyclical objects of varying shape and size, giant flowing blobs of chaos and minimal

replicators.

Page 16 of 28

© 2005 - Stephen James

6 CONCLUSIONS

This paper aimed to highlight and describe a new method of finding complex rulesets

within the CA rulespace. Section 3 pointed to the significant difference of “stay alive” and

“population” rates in the Game of Life compared with other, less complex, rulesets. Section

4 described a GA which could search the CA landscape for other rulesets with the same

“footprint”. Section 5 outlined a handful of the rulesets found and describes the behaviour

of each. The final question, therefore, is whether or not the evolved rulesets are

“complex”, and so whether the main aim of this paper has been met.

On Complexity

Unfortunately this question doesn’t have so simple an answer. As with so much in the field

of A-Life and AI, the term lacks precise definition and therefore becomes somewhat open

to interpretation.

Using Wolframs classes, behaviour which is neither ordered (fixed/cyclical) or chaotic

(unpredictable and hence without pattern or form) is defined as “complex” or “interesting”.

More recently however, with a shift in focus towards the commercial use of CAs, CA

researchers have begun to redefine complexity in terms of the emergent computational

capacity of a system.

Further still, Ninagawa attempts to formally restate complexity as a dynamical system

which displays 1/f fluctuations in a changing state-space.

The results shown certainly display behaviours which fit within Wolfram’s criteria of Class

IV CAs, and many also show promising signs of emergent computation capabilities9. On

this basis, the author feels able to conclude that “complex” rulesets have indeed been

found according to these definitions. Other definitions, however, would require further

investigation.

Further Investigations

There are a number of assumptions, parameters and choices within this paper which would

greatly benefit from further investigation and discussion.

Firstly, the mutational GA developed certainly served its primary purpose of finding

complex rulesets fitting the highlighted “significant factors”. However, its initial aim of

slowly mutating rulesets towards greater and greater complexity was not met. The most

9 Glider collisions have been briefly examined although not outlined within the body of this paper.

Page 17 of 28

© 2005 - Stephen James

successful mutation rate tended to be an extremely high 10-20% - making this a rather

crude example of a GA.

A detailed examination of alternative techniques may result it a greater understanding of

the CA landscape. For example, a more formal neutral network algorithm may assist in

achieving the initial “step by step” goal and so enable the mapping of the CA landscape.

The genotype encoding itself has a crucial feature which may affect the style of GA that

can be used successfully. Figure 6 highlights the ruggedness in state transition between

three consecutive rules. A smoother encoding which slowly changes the “alive-ness” of

states may allow recombination to play a greater role.

Value = 255

32 2 64

16 1 4

256 8 128

Value = 256

32 2 64

16 1 4

256 8 128

Value = 257

32 2 64

16 1 4

256 8 128

(Figure 6) 3 numerically consecutive, but vastly different, states

The primary questions posed by this report however, should pertain to the significance of

the population and SA rates in determining complexity.

The measurement of Gaussian distribution in SA rate variance, for example, was primarily

implemented as a method of drowning out unwanted ordered variance (regular waves) but

it is felt to have a more important significance that that. It may have similar implications of

“multi-scale” variance similar to Ninagawa’s 1/f noise.

Similarly, the population is shown to closely follow λ in chaotic systems and an increase in

order appears to have the effect of pulling it away from this norm. Is this relationship

proportional? How does it relate to other measures of complexity, such as entropy

variance? These questions certainly warrant a deeper investigation and work has already

been begun to fully understand these relationships.

Finally, it is exceedingly important to examine the portability of these observations to

larger state or larger dimension CAs, and also to other discrete dynamical systems such as

Random Boolean Networks. For these factors to be established as proper measures of

complexity, they must be demonstrated to have a wider scope than the 2-state, 2D CAs

looked at within this report.

Page 18 of 28

© 2005 - Stephen James

Propositions

During this process of “Looking for Life”, a large number of complex worlds have been

peered into and observed. In the vastness of computational space there are many forms of

glider, an exquisite array of replicators and some beautiful displays of cyclical attraction.

A lot of these worlds, including the Game of Life, provide temporary displays of complex

and interesting behaviour; but they eventually run out of energy and decay to simpler

worlds of ordered structure.

In others, the decay runs the other way; with chaotic fires burning away ordered

structures until the system is left in a state of high energy and chaos.

However, a rare few kept energetic decay at bay. In these worlds, emergent complex

behaviours were able to persist.

Maybe complexity is simply the measure of a systems capacity for maintaining itself far

from the states of chaos and order; a state of energetic non-equilibrium kept alive through

replication, translation and form. To this extent, maybe complexity and life have more in

common than was initially considered.

Page 19 of 28

© 2005 - Stephen James

7 REFERENCES
[1] Ganguly N., et al. (2003) “A Survey on Cellular Automata”, Technical Report Centre for High Performance

Computing, Dresden University of Technology

[2] Ninagawa S. (1998) “1/f fluctuation in the Game of Life”, Physica D vol. 118, pp. 49-52

[3] Ninagawa S. (2005) “Evolving Cellular Automata by 1/f Noise”, proceedings of ECAL 2005

[4] Wuensche A. (1996) “Attractor Basins of Discrete Networks”, D.Phil, University of Sussex

[5] Mitchell M., Crutchfield J.P., Das R. (1997) “Evolving Cellular Automata to Perform Computations”

[6] Crutchfield J.P., Mitchell M. (1995) “The Evolution of Emergent Computation”, Proceedings of the

National Academy of Sciences, USA 92:23 10742-10746.

[7] Mitchell M., Hraber P.T., Crutchfield J.P. (1993) “Revisiting the Edge of Chaos: Evolving Cellular

Automata to Perform Computations”, Complex Systems 7, pp. 89-130.

[8] Packard N. H. (1988), "Adaptation toward the edge of chaos", Dynamic Patterns in Complex Systems,

pp. 293-301.

[9] Langton C.G. (1990) “Computation at the edge of chaos: Phase transitions and emergent computation”,

Physica D vol. 42, pp. 12-37.

[10] Park K., (webpage) “Stochastic Cellular Automata”

http://www.cs.purdue.edu/homes/park/interest-ca.html

[11] Hanson J.E., Cruthfield J.P. (1994) “The attractor-basin portrait of a cellular automaton”.

[12] Wolfram S. (1984) “Universality and complexity in cellular automata”, Physica D vol. 10

[13] Seeley T.D. (1991) "Collective decision making in honey bees: how colonies choose among nectar

sources" Behav. Ecol. Sociobiol. vol 28 pp 277-290.

[14] Britton N.F., Pratt S.C., Franks N.R., Seeley T.D. (2002) “Deciding on a new home: how do

honey-bees agree?” Proceedings of the Royal Society of London B 269:1383-1388.

[15] Johnson S. (2001) “Emergence”, Penguin Books, p 32-33

[16] James S. (2004) “Evolutionary CA and the Edge of Chaos”, Unpublished, University of Sussex MSc Paper

Page 20 of 28

© 2005 - Stephen James

8 APPENDIX A –MATLAB CODE

The following is the final programme code for the GA developed to search for complex

systems. It was written and run within MATLab version 7.0.1.15

function[] = LL(filename)
%--
% GLOBAL SETUP
%--

global h_figure1; global h_figure2;
global fld; global staterot; global dieifalone; global stochastic;
global xx; global xplus; global xminus; global gridcount;

h_figure1 = figure(1); h_figure2 = figure(2);

set(h_figure1,'Name','SA and Population Rates','WindowStyle','Docked')
set(h_figure2,'Name','CA Animation','WindowStyle','Docked')

fld = 'C:\Looking for Life\';

%--
% Set Up Constants
%--
% --- CA SETUP ---
gridsize = 50; % --- how many cols/rows should the CA have
maxt = 100; % --- the number of timesteps
symmetry = 1; % --- 1 = include symmetry ; 0 = exclude
dieifalone = 1; % --- 1 = always result in death for a single cell

% --- GA SETUP---
gentime = 100; % --- how many generations in GA
popsize = 60; % --- how big a population in GA
GAkeepalives = 10; % --- how many parents to keep unmutated
muteprob = 0.4; % --- maximum mutation rate

% --- LAMBDA ---
initlambda = 0.27; % --- start population with roughly this Lambda
targetlambda = 0.5; % --- the DESIRED VALUE for lambda

% --- SA AND POPULATION ---
targetsa = 0.5; % --- the DESIRED VALUE for SA
initpop = 0.1; % --- the initial population density
targetpop = 0.1; % --- the DESIRED VALUE for P

% --- General ---
nbhood = 9; % --- the neighbourhood size of the CA
nostates = 2; % --- the state size of the CA
rulesize = (nostates^nbhood); % --- the number of rules in the CA ruletable
bestscore = -1000000; % --- initialising the best GA score
bestscorecount = 1; % --- a counter used for counting new BEST SCORES
startpop = 1; % --- counter used within code
xx = 1:gridsize; % --- counter used – array of X cell positions
xplus = [2:gridsize,1]; % --- counter used – array of X + 1 cell positions
xminus = [gridsize,1:gridsize-1]; % --- counter used – array of X – 1 cell positions
gridcount = gridsize^2; % --- counter used – number of cells in the lattice
muterate = zeros(1,popsize); % --- counter used within code

[gauss gaussix] = hist(randn(1, 10000),21); % --- array storing a GAUSSIAN set of data
%---

Page 21 of 28

© 2005 - Stephen James

%---
%---
% Set Up Initial Rules
%--
%--

% Set Up Rotation Matrix
for i = 1:1:rulesize

[y1 y2 y3] = staterotate(i);
staterot(i, 1:3) = [y1 y2 y3];

end

if (symmetry == 0)
if (initlambda == 0)

% ------------------------
% --- GAME OF LIFE
% ------------------------
rulesets = 0:(rulesize-1);
alive = bitand(rulesets,1);
nbours = bitcount(rulesets,nbhood)-alive;
rules(1,:) = (((nbours<4) .* (nbours>1) .* alive) + (nbours==3))>=1;

else
% ------------------------
% --- BASED ON LAMBDA
% ------------------------
rules = rand(popsize,rulesize)<initlambda;

end
else

% ------------------------
% --- SYMMETRICAL
% ------------------------
rules = zeros(popsize,rulesize);
for i = 1:1:popsize

for j = 1:1:ceil((rulesize*initlambda)/4)
tmprule = ceil(rand() * (rulesize-1));
while(rules(i,tmprule) == 1) tmprule = ceil(rand() * (rulesize-1)); end
rules(i,tmprule) = 1;
rules(i,staterot(tmprule,1)) = 1;
rules(i,staterot(tmprule,2)) = 1;
rules(i,staterot(tmprule,3)) = 1;

end
end

end
% ------------------------
% --- DIE IF ALONE
% ------------------------
if (dieifalone == 1) rules(:,2) = 0; end

% ------------------------
% --- LOAD FROM FILE
% ------------------------
if (strcmp(filename,'') == 0)

gentime = 1; popsize = 1; symmetry = 0; dieifalone = 0; GAkeepalives = 0;
load(cat(2,fld,filename));
rules = bestrules;

end

%---

Page 22 of 28

© 2005 - Stephen James

%---
% RUN NEUTRAL NETWORK
%--
for generation = 1:1:gentime

%----------------------------
% CALCULATE GENERATION SCORES
%----------------------------
for i = startpop:1:popsize

% --- INITIALISE CA GRID ---
initcells = ones(gridsize,gridsize);
while (abs(sum(sum(initcells)/gridcount) - initpop) > 0.005)

initcells = (rand(gridsize,gridsize))<initpop;
end

% --- CALCULATE LAMBDA ---
if (stochastic == 0)

lambda = sum(rules(i,:) ==1)/rulesize;
end

% --- RUN CA ---
[finalcells noIters, stats] = …

runCA(initcells,rules(i,:),gridsize,maxt,nbhood,0,0,nondeterminism);

% --- CALCULATE SCORES ---
fullp = stats(3,:);
fullsa = stats(1,:);

p = fullp(ceil(noIters/5):noIters-1);
sa = fullsa(ceil(noIters/5):noIters-1);

meanp = mean(p);
meansa = mean(sa);

meanp1 = mean(fullp(1:ceil(noIters/2)));
meansa1 = mean(fullsa(1:ceil(noIters/2)));

meanp2 = mean(fullp(ceil(noIters/2):noIters-1));
meansa2 = mean(fullsa(ceil(noIters/2):noIters-1));

dista = 0; distb = 0; distc = 0; distd = 0; diste = 0; distf = 0;
varsa = 0; varsa2 = 0;

% Check for gaussian variance
distrsa = sa(1:1:size(sa,2)-1) - sa(2:1:size(sa,2));
varsa2 = (((max(distrsa) - min(distrsa)) * 10) - 10);
distrsa = distrsa .* ((max(gaussix)-min(gaussix)) / (max(distrsa) - min(distrsa)));
gausssa = hist(distrsa,21);
gausssa = gausssa .* (sum(gauss)/sum(gausssa));
varsa = - ((sum(abs(gauss - gausssa))/4000));
if (varsa < -2) || isnan(varsa)

dista = -50;
else

dista = varsa2;
end

if (targetlambda > 0)
distb = 0 - abs(lambda-targetlambda)*25;

end

if (targetsa > 0)
distc = distc - abs(meansa2-targetsa)*5;
distc = distc - abs(meansa1-targetsa)*5;

end

if (targetpop > 0)
diste = diste - abs(meanp2-targetpop)*25;

Page 23 of 28

© 2005 - Stephen James

diste = diste - abs(meanp1-targetpop)*25;
diste = diste - abs(meanp2-meanp1)*50;

end

if (max(sa) > 0.99) distf = -50; end
if (min(sa) < 0.01) distf = -50; end
if (min(p) < 0.01) distf = -50; end

genscores(i) = dista + distb + distc + distd + diste + distf;

if isnan(genscores(i))
genscores(i) = -100;

end

% --- BEST SCORE TEST & GRAPHING ---
if (genscores(i) > bestscore)

bestscore = genscores(i);
bestrules = rules(i,:);

figure(h_figure1); hold off; clf; grid on; axis xy; hold on;
xlabel('Time');
ylabel('Proportion');
axis([1 noIters 0 1]);
plot(1:1:noIters,fullp,'g-','LineWidth',1);
plot(1:1:noIters,fullsa,'r-','LineWidth',1);
plot(1:1:noIters,fulld,'c-','LineWidth',1);
plot(1:1:noIters,fullb,'m-','LineWidth',1);
line([0 noIters],[lambda lambda],'Color','b','LineWidth',2);

figure(h_figure2); hold off; clf; grid on; axis xy; hold on;
hist(distrsa,21);

drawnow;
save(cat(2,fld,num2str(bestscorecount),' - RULES.mat'),'bestrules');
saveas(h_figure1,cat(2,fld,num2str(bestscorecount),' - SA POP.jpg'))

bestscorecount = bestscorecount + 1;
end
% ---

end
% --- END CALCULATE POPULATION SCORES ---

%----------------------------
% NEUTRALITY WANDERING
%----------------------------
%startpop = GAkeepalives;
[genscore ix] = sort(genscores,'descend');
for a = 1:1:popsize

ruleid = ix(a);
% --- KEEP GOOD PARENTS ---
if a <= GAkeepalives

newrules(a,:) = rules(ruleid,:);
% --- CREATE NEW CHILDREN ---
else

%parentrule = ceil(rand*GAkeepalives);
parentrule = mod(a,GAkeepalives) + 1;
newrules(a,:) = newrules(parentrule,:);
if (symmetry == 0)

% --- NORMAL ---
for j=1:1:rulesize

if(rand()<muteprob) newrules(a,j) = abs(1-newrules(a,j)); end
end

else
% --- SYMMETRICAL ---
if (muteprob >= 1)

noofmutations = muteprob;
else

muterate(1,a) = rand * muteprob;
noofmutations = ceil((rulesize*muterate(1,a))/4);

Page 24 of 28

© 2005 - Stephen James

end
for j = 1:1:noofmutations

tmprule = ceil(rand() * (rulesize-1));
newrules(a,tmprule) = abs(1-newrules(a,tmprule));
newrules(a,staterot(tmprule,1)) = newrules(a,tmprule);
newrules(a,staterot(tmprule,2)) = newrules(a,tmprule);
newrules(a,staterot(tmprule,3)) = newrules(a,tmprule);

end
end

end
end
rules = newrules;
% --- DIE IF ALONE ---
if (dieifalone == 1) rules(:,2) = 0; end
% --- END NEUTRALITY WANDERING ---

output = [generation mean(genscores) max(genscores)]
end
% --- END NEUTRAL NETWORK ---
%---

%---
% ALLOW USER TO RUN FINAL RESULT
%---
g=input('Enter 1 to run (or 2 to save video) and press enter\n');
while (g >= 1)

gridsize = 100;
maxt = 155;
drawSpeed = 0.008;

g1 = 0; g1=input('Enter gridsize\n');
if (g1 >= 1) gridsize = g1; end

g1 = 0; g1=input('Enter maxt\n');
if (g1 >= 1) maxt = g1; end

xx = 1:gridsize;
xplus = [2:gridsize,1];
xminus = [gridsize,1:gridsize-1];
gridcount = gridsize^2;

initcells = ones(gridsize,gridsize);
while (abs(sum(sum(initcells)/gridcount) - initpop) > 0.005)

initcells = (rand(gridsize,gridsize))<initpop;
end

[finalcells noIters, stats] =
runCA(initcells,bestrules,gridsize,maxt,nbhood,g,drawSpeed,nondeterminism);

g=input('Enter 1 to run (or 2 to save video) and press enter\n');
end
%---

end

Page 25 of 28

© 2005 - Stephen James

%---------------
% runCA function
%
% Given an inital state, a set of rules and details
% of the CA, run a the CA for maxt iterations.
%---------------
function[cells noOfIters, stats] =
runCA(cells,rules,gridsize,maxt,nbhood,drawIt,drawSpeed,nondeterminism)

global h_figure2;
global fld;
global xx; global xplus; global xminus; global gridcount;

warning off all
noOfIters = 1;
noAs = sum(sum(cells));
stats = zeros(5,maxt);
noBs = 0; noDs = 0; noSAs = 0; S = 0;

if (drawIt >= 1)
if(drawIt == 2) mov = …

avifile(cat(2,fld,'output.avi'),'fps',15,'quality',100,'compression','CinePak'); end;
emptygrid = zeros(gridsize,gridsize);
IMH = image(cat(3,emptygrid,cells,emptygrid));
axis equal;
axis tight;
pause(drawSpeed);

end

% --- Perform STATE Changes ---
while ((noOfIters <= maxt))

oldcells = cells;
oldAs = noAs;
states(xx,xx) = 1 + cells(xx,xx) + ...

(2 * cells(xplus,xx)) + ...
(4 * cells(xx,xplus)) + ...
(8 * cells(xminus,xx)) + ...
(16 * cells(xx,xminus)) + ...
(32 * cells(xplus,xminus)) + ...
(64 * cells(xplus,xplus)) + ...
(128 * cells(xminus,xplus)) + ...
(256 * cells(xminus,xminus));

cells(xx,xx) = rules(states(xx,xx));

if(drawIt >= 1)
set(IMH, 'cdata', cat(3,emptygrid,cells,emptygrid));
if(drawIt == 2) F = getframe(gcf); mov = addframe(mov,F); end;
drawnow
pause(drawSpeed);

end

noAs = sum(sum(cells));
noSAs = sum(sum(oldcells&cells)) / oldAs;
stats(3,noOfIters) = (noAs/(gridsize*gridsize));
stats(1,noOfIters) = noSAs;
noOfIters = noOfIters + 1;

end

if(drawIt>=1)
set(IMH, 'cdata', cat(3,emptygrid,cells,emptygrid));
if(drawIt == 2) F = getframe(gcf); mov = addframe(mov,F); end;
drawnow; pause(drawSpeed);
if(drawIt == 2) mov = close(mov); end;

end
noOfIters = noOfIters - 1;

end

Page 26 of 28

© 2005 - Stephen James

%--------------------------------------
% STATE ROTATE Function
%
% Given a STATE, produce 3 rotations
%--------------------------------------
function[y1 y2 y3] = staterotate(x)

y = x - 1;
y1 = bitand(y,1)/1 * 1 + ...

bitand(y,2)/2 * 4 + ...
bitand(y,4)/4 * 8 + ...
bitand(y,8)/8 * 16 + ...
bitand(y,16)/16 * 2 + ...
bitand(y,32)/32 * 64 + ...
bitand(y,64)/64 * 128 + ...
bitand(y,128)/128 * 256 + ...
bitand(y,256)/256 * 32;

y2 = bitand(y1,1)/1 * 1 + ...
bitand(y1,2)/2 * 4 + ...
bitand(y1,4)/4 * 8 + ...
bitand(y1,8)/8 * 16 + ...
bitand(y1,16)/16 * 2 + ...
bitand(y1,32)/32 * 64 + ...
bitand(y1,64)/64 * 128 + ...
bitand(y1,128)/128 * 256 + ...
bitand(y1,256)/256 * 32;

y3 = bitand(y2,1)/1 * 1 + ...
bitand(y2,2)/2 * 4 + ...
bitand(y2,4)/4 * 8 + ...
bitand(y2,8)/8 * 16 + ...
bitand(y2,16)/16 * 2 + ...
bitand(y2,32)/32 * 64 + ...
bitand(y2,64)/64 * 128 + ...
bitand(y2,128)/128 * 256 + ...
bitand(y2,256)/256 * 32;

y1 = y1 + 1;
y2 = y2 + 1;
y3 = y3 + 1;

end

%--------------------------------------
% BIT COUNT Function
%
% Given a number, how many bits are on?
%--------------------------------------
function[y] = bitcount(x,size)

y = bitand(x,1)/1 + ...
bitand(x,2)/2 + ...
bitand(x,4)/4 + ...
bitand(x,8)/8 + ...
bitand(x,16)/16;

if (size == 9)
y = y + ...

bitand(x,32)/32 + ...
bitand(x,64)/64 + ...
bitand(x,128)/128 + ...
bitand(x,256)/256 + ...
bitand(x,512)/512;

end
end

Page 27 of 28

© 2005 - Stephen James

%--------------------------------------
% STATE FLIP V
%
% Given a state, flip it vertically
%--------------------------------------
function[y] = stateflipv(x)

x = x - 1;
y = bitand(x,1)/1 * 1 + ...

bitand(x,2)/2 * 2 + ...
bitand(x,4)/4 * 16 + ...
bitand(x,8)/8 * 8 + ...
bitand(x,16)/16 * 4 + ...
bitand(x,32)/32 * 64 + ...
bitand(x,64)/64 * 32 + ...
bitand(x,128)/128 * 256 + ...
bitand(x,256)/256 * 128;

y = y + 1;
end

%--------------------------------------
% STATE FLIP H
%
% Given a state, flip it horizontally
%--------------------------------------
function[y] = statefliph(x)

x = x - 1;
y = bitand(x,1)/1 * 1 + ...

bitand(x,2)/2 * 8 + ...
bitand(x,4)/4 * 4 + ...
bitand(x,8)/8 * 2 + ...
bitand(x,16)/16 * 4 + ...
bitand(x,32)/32 * 256 + ...
bitand(x,64)/64 * 128 + ...
bitand(x,128)/128 * 64 + ...
bitand(x,256)/256 * 256;

y = y + 1;
end

Page 28 of 28

